

Democritus University of Thrace DEPARTMENT OF ECONOMICS Excellence. Science. Innovation.

A Complex Network Analysis of the U.S. Gross State Product

European Union European Social Fund

NISTRY OF EDUCATION & RELIGIOUS AFFAIRS, CULTURE & SPORTS A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

Graph

Graph

Graph

Representation

Representation

Representation

Neighborhoods

Neighborhoods

Neighborhoods

a) Identify a reduced version of the initial networkb) retaining the necessary informationc) to control and analyze the network.

Current Solution: Minimum Spanning Tree + Heuristics

Methodology

Widely used in the literature:

Minimum Dominating Set

Given a graph G=(N,E) where N is the set of nodes and E is the set of edges,

a subset $S \subseteq N$ is a **Dominating Set** of G if every node $u \in N$ is either included in S or is adjacent to one or more nodes of S

MDS is the Dominating Set with minimum cardinality

Threshold Minimum Dominating Set

A 2-step methodology consisting of:

- 1. Imposing a **threshold** on the edges
- 2. Identifying the MDS on the thresholded network

Methodology

Research objectives

Primary

• Examine the **evolution** of business cycle synchronization in the U.S. states

Secondary

- Identify groups of U.S. states with similar macroeconomic behavior
- Possibly construct a map of **contagion** paths

The data

- **Real Gross State Product** of 51 U.S. states (50 states plus the District of Columbia)
- Source: Bureau of Economic Analysis, U.S.
 Department of Commerce
- - The Bureau strongly advises against mixing the series
- Selected dataset: GSP of 51 U.S. states, 1997-2013, annual frequency

Empirical application

- Graph Theory Network construction
- Nodes: 51 U.S. states
- Edges: **similarity** of the Gross State Product patterns
- Implement the Threshold Minimum dominating Set (T-MDS)
- Identify:
 - the Dominant states
 - their neighborhoods
 - Isolated states

Similarity Measures

Similarity Measures

A. Pearson's Correlation Coefficients

• On the GSP growth rates

B. Sign Concordance Indices (SCI)

- Extract cyclical component with HP filter
- Percentage of times that both cyclical components are above or below trend

Versions

1. Simple

 All observations have the same weight

2. Weighted

 Assign exponentially heavier weights to more recent observations

Inference

• **Comparison** of the two versions provides evidence on **convergence**

Evidence on Convergence

More specifically:

Compare the weighted and standard versions of the network

If weighted version is denser and T-MDS cardinality lower

Indicates higher GSP growth similarity in recent years

Interpreted as empirical evidence of business cycle convergence

Network Metrics

T-MDS metrics

- a. Dominant states
- b. Isolated states
- c. T-MDS Cardinality = a + b

Standard Network metrics

- **a. Node degree**: number of direct neighbors
 Measuring the **connectivity** (synchronization) of each individual state
- Network density: ratio of existing edges to maximum possible number of edges
 Measuring the connectivity (synchronization) of the U.S. states as a whole

A. Correlation Coefficient

Network Metrics	Standard Version				Weighted Version				
Threshold level	0.75	0.80	0.85	0.90	0.75	0.80	0.85	0.90	
Network Density	0.10	0.05	0.02	0.01	0.18	0.11	0.05	0.02	
Average Node Degree	5.05	2.78	1.25	0.15	9.45	5.56	2.86	0.98	
Isolated nodes	18	19	27	43	8	14	18	26	
Dominant nodes	7	8	8	4	6	8	8	10	
T-MDS cardinality	25	27	35	47	14	22	26	36	

In the weighted version:

- Network density and node degree higher
- Less isolated nodes
- Smaller T-MDS cardinality
- The whole network **represented** by **less** states

Empirical Results

- Both metrics **higher** in weighted versions
- Similarity increased

Empirical Results

B. Sign Concordance Index

	Standard Version				Weighted Version				
Threshold	0.75	0.80	0.85	0.90	0.75	0.80	0.85	0.90	
Network Density	0.34	0.20	0.07	0.02	0.33	0.24	0.20	0.17	
Aver. Node Degree	17.49	10.05	3.76	1.06	16.94	12.15	10.15	8.66	
Isolated nodes	3	6	11	28	1	2	5	7	
Dominant nodes	5	6	8	8	5	6	6	6	
T-MDS cardinality	8	12	19	36	6	8	11	13	

In the weighted version:

- Network density and node degree higher
- Less isolated nodes
- Smaller T-MDS cardinality
- The whole network represented by less states

Empirical Results

- Both metrics higher in weighted versions
- Similarity increased

Interpretation of the results

- Both similarity measures present qualitatively similar results.
- Denser network in weighted cases
- Less isolated nodes in weighted cases
- T-MDS cardinality is smaller

Taking into account

The weighted versions assign **heavier** weights to more **recent** GSP observations

Evidence of recent **convergence** of US GSP growth rates

The Network overview

The Network overview

- **Dominant states:** red underlined
- Isolated states: white, Highly idiosyncratic behavior
- Color: indicates neighborhood
- Observe formation of closely behaving neighborhoods
- Identify the drivers of these patterns
- Implement policies to sustain/increase business cycle synchronization
- Examine the paths of macro contagion T-MDS Convergence of the U.S. GSP

Empirical Results - Neighborhoods

Dominant	Colorado	Maine	Texas	Virginia	Pennsylvania	Wisconsin
Neighbors	California	Connecticut	Illinois	Maryland	Alabama	Alabama
	Florida	Indiana	Mississippi	New York	Arizona	Arizona
	Georgia	Missouri	New Jersey		Arkansas	Arkansas
	Idaho	New Jersey	North Dakota		California	California
	New Jersey	North Carolina	Ohio		Hawaii	Florida
	North Carolina	Rhode Island	Tennessee		Illinois	Georgia
	Oklahoma		Utah		Indiana	Hawaii
	Washington				Kansas	Illinois
	_				Kentucky	Indiana
Ĺv	1		<u>í</u>		Massachusetts	lowa
/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-{}				Michigan	Kansas
	12m F		$\zeta $		Minnesota	Kentucky
		76	4 F	2	Montana	Massachusetts
	74 -				Nevada	Michigan
7 4			1 Mart		New Hampshire	Minnesota
15		<u> </u>			Ohio	Montana
2 1		¥_			Oregon	Nebraska
\sim			- Curry		South Carolina	Nevada
-2			$\setminus \lor$		Tennessee	New Hampshire
					Vermont	Ohio
		تلرب ا	\sim		Wisconsin	Pennsylvania
			۲ ک			South Carolina
_			\sim			Vermont
		~				

Future research paths

- Construct a directed network using Granger causality (examine the flow of macroeconomic changes)
- Construct the network using lagged similarity (examine the time lag before a shock propagates and possibly use the T-MDS in forecasting)
- Dynamically simulate the patterns and speed of dispersion paths of an economic shock

Democritus University of Thrace DEPARTMENT OF ECONOMICS Excellence. Science. Innovation.

Thank you

Acknowledgments

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: **THALES**. Investing in knowledge society through the European Social Fund.

European Union European Social Fund

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS, CULTURE & SPORTS MANAGING AUTHORITY

Co-financed by Greece and the European Union